Navigation Menu


Alert Web

HeraAssetPublisherFilterComuneSelector

Choose the municipality

Ci dispiace, il servizio non è attivo nel tuo comune.
Esplora i servizi attivi nel tuo comune:
Inserisci un comune con il servizio di "Ambiente" oppure vai all'Homepage

The search for water leaks is now more efficient, thanks to cosmic rays

Testata Focus

Category Facet

Custom Facet

Search Results

24414 results for

Asset Publisher

The search for water leaks is now more efficient, thanks to cosmic rays

Hera continues experimentation of the innovative, fast and low-cost contactless system that uses space technology to detect water leaks in the network more quickly and productively

So far, the method used to find leaks in the water mains that run under our streets has been acoustic detection: technicians walk the kilometres of asphalt above the mains and use special devices to locate leakage points.

Now, however, thanks to a system that uses cosmic rays, detection can also be carried out while following the network path in a car, thus proving faster and more profitable.

Cosmic rays: what are they and how can they be used?

Cosmic rays are an innovative method for water leak detection, based on the analysis of neutrons derived from secondary cosmic rays. It follows the same principle used to test whether there is water on Mars, but it can have different applications; for example, it is used in agriculture in the US for targeted irrigation.

In short, this technology exploits non-damaging particles, the neutrons, from space. These continuously impact Earth, generating collisions between secondary beams, the energy of which decreases according to the material that is passed through. In particular, hydrogen in water interacts with neutrons by slowing them down or absorbing them. The amount of water in the ground can therefore be assessed by monitoring neutrons in the air: ground where water is present in a higher percentage will have a greater moderating/absorbing effect on cosmic rays than a drier area.

By analysing the concentration of free cosmic rays, the presence of a water leak can be determined quickly and accurately, saving considerable time compared to traditional methods of investigation. In fact, this system can control a considerably larger network area, because it can travel on any vehicle on which it is mounted.

The search can be carried out by real-time identification, i.e. simply by the passage of the device over the tube and immediate verification of the leakage as soon as the sensor signals a decrease in the number of neutrons, or by deferred search, when the sensor placed on a moving vehicle passes over the area several times and then indicates the wettest spots.

The operator will no longer need to walk the entire water network with the geophone, but can go directly to the points identified on the map.

Experimentation and results

Together with the Department of Nuclear Physics at the University of Padua, we have developed a device that, mounted on a car, allows operators to travel along the network and monitor the concentration of neutrons on the road surface.
The vehicle moves at a speed of 40-50 km/h along the road under which the water network runs and, using cosmic ray analysis, the levels of detected neutrons are shown on a display. When the concentration drops, it is a sign that the neutrons have been retained under the soil by a cluster of water. When this happens, it means that there may be a water leak in that very spot, underground, and technicians can promptly intervene for repairs.

The testing of this technology, which we have been conducting since 2021, has confirmed the scientific soundness of the method: out of several thousand kilometres investigated, the same number of ruptures were found as with the traditional acoustic method, but with the advantage that the cosmic ray method is more productive, since the operator moves around in a car rather than on foot.
With a network of some 30,000 kilometres to check, having this tool allows us to make great strides. In addition, cosmic rays are sensitive to even modest leaks, such as those from pipe joints, which are more difficult to detect accurately.

This technology, which we have implemented thanks to a partnership with the start-up Cosmic and the team at Neptune Srl, is based on an isotope of lithium, lithium-6, which is the element that allows us to detect neutrons. We will continue to use it alongside the classic acoustic method, to locate all possible leaks and increase the level of effectiveness of interventions.

Tag Facet

Asset Publisher

Focus

A source of clean energy from sewers and wet waste: Biomethane

An investment of Euro 37 million. A plant that disposes of 100 thousand tonnes of organic waste produced by separate waste collection and another 35 thousand tonnes coming from green waste and pruning material. 

Focus

Biodiesel has been developed also from used food oil

Fuel may also be extracted from vegetable oils. Used domestic vegetable oil (such as frying oil) which is recovered by multiutility services via roadside containers and drop-off points, is transformed into biodiesel, which in turn is used to fuel the vehicles used for urban waste collection.

Focus

Bus fuel from trash: Hera's pilot project with "START"

To obtain clean energy to power Ravenna's buses by decomposing waste in landfills. 

Focus

Data, the key to a smart future

From city to "smart city" thanks to data: with our detection systems we can monitor traffic trends, air quality and consumption of public parks. 

Focus

Dialogue with the urban context for new energy: the Borgo Panigale cogeneration plant

District heating is already in itself a "sustainable" and environment-friendly solution, because it can guarantee better performance than traditional domestic boilers. In addition, the plant located in Borgo Panigale ensures lower emissions into the environment, more reliability and greater availability of energy. The system can heat the equivalent of 8,000 residential units. Currently, the turbines can produce 35,000 MWh of energy per year, almost twice as much as in the past.

Focus

Ferrara, the city of "green" heat

What's Ferrara's green secret? It's underground, where a geothermal basin feeds its district heating system. The result? 87% of the thermal energy distributed in the city is "clean" and we avoid about 22 thousand tonnes of CO 2 emissions.

Focus

Hera and General Electric together for energy recovery

We have installed a turbo expander at the R&M stations of Ducati's factory in Bologna. The goal is to recover electricity from the decompression process of methane gas. 

Focus

Hergo Reti: the smart approach to emergency service and maintenance

More than 130 thousand emergency response reports involving 1,500 employees in 2019. More than 50 thousand emergency response operations in the first six months of 2020, in a local area that includes Emilia-Romagna, Triveneto and Marche.

Focus

Hergoambiente, waste bin speaking

Our 300,000 waste bins are talking. How? Thanks to a "tag" that always tells us where they are, how they are working and if they have been emptied. Find out more about the projects of HergoAmbiente, Hera Group's "smart" system to support waste management services.

Focus

Innovation takes flight and offers a variety of perspectives

Hera Group's drones are alternative and supplemental investigation tools to provide quality services to the areas we serve.

— 10 Items per Page
Showing 1 - 10 of 28 results.

Search Results

24414 results for

Bilancio bs e be banner

Interactive financial statements and sustainability reports
The consolidated economic results at 31 December 2023 and the 2023 sustainability report were approved by the Board of Directors of the Hera Group on 26 March 2024

Pre-Footer Standard

Hera SpA, Viale Carlo Berti Pichat 2/4, 40127 Bologna, Tel.051287111 www.gruppohera.it