Navigation


Alert Web

HeraAssetPublisherFilterComuneSelector

Choose the municipality

Ci dispiace, il servizio non è attivo nel tuo comune.
Esplora i servizi attivi nel tuo comune:
Inserisci un comune con il servizio di "Ambiente" oppure vai all'Homepage

NexMeter: the smart gas meter offering innovation, safety and sustainability

Testata Focus

Testata Focus

Category Facet

category
Category Facet

Custom Facet

ddmStructureKey
Custom Facet

Search Results

x-results-for-x

Asset Publisher

NexMeter: the smart gas meter offering innovation, safety and sustainability

The NexMeter Green project aims to take a further step towards the future by offering a product that is not only safe and innovative but also sustainable

The existing NexMeter meter will be transformed into a more eco-friendly (green) meter, by replacing over 68% of the internal and external plastic components with others derived from recycled and recyclable materials.

The plastic materials currently used in packaging will be eliminated and/or replaced with 100% recycled materials, such as plastic caps that are more likely to be dispersed in the environment. A further feature also makes the use of the meter green: the manual will be dematerialised and made accessible via a QR code.

Nexmeter Green was developed in collaboration between InRete, Aliplast and the Pietro Fiorentini company. It represents a further evolution of the current version.
Created in 2019 NexMeter was the Hera Group’s first 4.0 meter, designed to be increasingly mindful of safety and consumption issues.

Its name derives from the union of the words “Next” (which means not only “near”, but also “future”) and “Meter
(the device itself). The "smart" meter is the result of the Hera Group’s know-how in the management of gas distribution and their continuous investments in innovation, research and development.

The Hera Group has chosen the most qualified companies as partners, both nationally and internationally: Panasonic, a Japanese multinational world leader in the manufacture of electronic products and components, and Pietro Fiorentini, a leading Italian company in the production of products and services for the entire natural gas supply chain.

NexMeter is more than just a meter: it is a "minià-computer" equipped with advanced technology, based on algorithms, sensors and ultrasound to offer users absolute precision and greater reliability. Using a state-of-the-art seismic mechanism, it is in fact able to intercept any earthquake shock in real time and suspend the gas supply activity, guaranteeing a qualitatively safer service in terms of preventing and reducing the risk of accidents.

These aspects bring certain benefits both for users, who are increasingly aware of their consumption, and for the distribution companies of the Hera Group, which thanks to NexMeter is able to manage the entire gas distribution network in a more advanced way. In addition to sending periodic reports regarding consumption figures, in the event of emergency, the new meter secures the system and immediately sends a report to the  Group's Central Remote Control in Forlì, which monitors networks and systems throughout the territory served by the multiutility in real time. If the remote control has an address available to the user, it in turn sends them an alert signal that appears on the meter display.

NexMeter is also the environmentally friendly meter: in fact, by being able to detect both immediate and large gas leaks and micro-leaks, it contributes to reducing polluting emissions, with positive effects also on boiler efficiency. In addition to being compatible with all types of networks and systems, NexMeter is also ready for use with future ‘green’ gases.


[business-activities/focus] hidden search categories

Tag Facet

tag
Tag Facet

Search Results

Focus
13/12/2023
Water Project
Innovation

State-of-the-art prevention and control tools for high-quality water

State-of-the-art prevention and control tools for high-quality water Around 10,000 new substances are constantly being released into the environment. To ensure the quality of the water distributed, we need to intercept potentially polluting substances contained in the raw water we take from the source, and prevent them from entering our drinking water systems. How? Through an early warning system which, thanks to the use of innovative tools, makes it possible to develop preventive control of the quality of water in the network, and to anticipate critical issues and management problems. img_prevenzione_controllo_focus_110.jpg Early warning: how does it work? Water can be identified by creating a typical digital imprint, the FingerPrint, built on a specific template. Basically, UV-visible spectrophotometric analysis technology is used to make a “scan” of water, i.e. a kind of characteristic digital image, creating a spectrum associated with various organic substances. The model acquires the “fingerprint” of the monitored water and uniquely identifies it. When the water taken from the source has a “fingerprint” that is not recognised, the system triggers an alarm and further checks are carried out. This technology is particularly fast, allowing a water scan in less than two minutes. In addition, the system is very useful because it allows us to interrupt the withdrawal of water resources until the pollution has “passed”, or the reliability of the reported alert has been verified, thus guaranteeing high levels of safety of the water within the network. no
Focus
13/12/2023
Water Project
Innovation

Sentry meters, to detect water leaks in the network

Sentry meters, to detect water leaks in the network contatori_kampsturp_110.jpg The Flow IQ® 2200 manufactured by Kamstrup, a well-established European supplier, is a sentry meter that can “listen” to the network thanks to a built-in hydrophone, i.e. a sensor designed to capture sounds and other acoustic signals underwater, which in this case is able to detect the noise associated with any water leaks. By placing the meters at strategic points in the network, about 50 metres apart, it is possible to create a grid within which continuous monitoring can be carried out. The meters transmit to a digital platform (called the LeakDetector) the minimum value of noise detected in 24 hours: if this is high, the meters will be highlighted with different alarm levels and analysis of the data will make it possible to identify whether it is indeed a water leak. If a leak or break code is activated for a meter, the customer will be notified promptly by our technicians. The meter testing phase started in May 2022 with the installation of more than 900 meters in the municipality of Conselice, where continuous monitoring of the water network began in September 2022 with real-time analysis of the leaks present, thereby allowing targeted intervention for repairs. It is planned to continue testing over a wider area, starting with Modena, where 1,300 meters are being installed. The Conselice pilot project: benefits noted Reliability The meters are extremely reliable, the leak and break indications that were verified were correct and no false positives were found. Promptness We intervened before customers called us: many leaks were repaired the day after they appeared, whereas previously some leaks would only have been detected following issue of a bill with an unusually high consumption figure. Permanent monitoring Compared to the installation of standard meters, the main difference is that with Flow IQ® 2200s, a permanent water leak monitoring system is put in place. Kamstrup meters are also smart meters and automatically send data to the portal. Rapid localisation If the meters are correctly positioned, field localisation is quick because the area to be investigated is confined. Integration The system interfaces seamlessly with other company monitoring tools. Affordability By correctly establishing the number of meters required, good network coverage is achieved without an unsustainable increase in costs. no
Focus
13/12/2023
Water Project
Innovation

Making water drinkable with nanotechnology: it’s now a reality!

Making water drinkable with nanotechnology: it’s now a reality! Micropollutants, or microcontaminants, are chemicals such as pesticides, drugs, medicines and other organic substances that are present in water in very low concentrations. These are substances that are hazardous to human health and the environment, which we constantly monitor and research in order to identify effective removal mechanisms and abatement technologies. img_focus_nanotecnologie_110.jpg “Removing and capturing” microcontaminants The project involves the use of materials recovered from the production of hollow fibres for membranes, such as scaffolds used in the medical field which, combined with graphene, can be used as filter material in the water purification process. In this way, a valuable material, which would otherwise be lost as process waste, is put back into circulation and given new life. Laboratory tests were performed comparing conventional materials, such as activated carbon and innovative materials (PSU-GO, RGO, GNP, etc.) for the treatment of water resources at the Pontelagoscuro (Ferrara) power plant. The objective of the test was to verify the effectiveness of these materials in removing various micropollutants, such as: EMPs (Emerging MicroPollutants), EPs (Emerging Pollutants) and possible by-products of ozonation, such as bromates. The results highlighted the effectiveness of certain filtering materials and the next step will be the construction of a pilot plant within the Pontelagoscuro power plant, to further study and perform further tests on a larger scale. no
Focus
13/12/2023
Water Project
Innovation

The search for water leaks is now more efficient, thanks to cosmic rays

The search for water leaks is now more efficient, thanks to cosmic rays So far, the method used to find leaks in the water mains that run under our streets has been acoustic detection: technicians walk the kilometres of asphalt above the mains and use special devices to locate leakage points. Now, however, thanks to a system that uses cosmic rays, detection can also be carried out while following the network path in a car, thus proving faster and more profitable. Raggi_cosmici_focus_110.jpg Cosmic rays: what are they and how can they be used? Cosmic rays are an innovative method for water leak detection, based on the analysis of neutrons derived from secondary cosmic rays. It follows the same principle used to test whether there is water on Mars, but it can have different applications; for example, it is used in agriculture in the US for targeted irrigation. In short, this technology exploits non-damaging particles, the neutrons, from space. These continuously impact Earth, generating collisions between secondary beams, the energy of which decreases according to the material that is passed through. In particular, hydrogen in water interacts with neutrons by slowing them down or absorbing them. The amount of water in the ground can therefore be assessed by monitoring neutrons in the air: ground where water is present in a higher percentage will have a greater moderating/absorbing effect on cosmic rays than a drier area. By analysing the concentration of free cosmic rays, the presence of a water leak can be determined quickly and accurately, saving considerable time compared to traditional methods of investigation. In fact, this system can control a considerably larger network area, because it can travel on any vehicle on which it is mounted. The search can be carried out by real-time identification, i.e. simply by the passage of the device over the tube and immediate verification of the leakage as soon as the sensor signals a decrease in the number of neutrons, or by deferred search, when the sensor placed on a moving vehicle passes over the area several times and then indicates the wettest spots. The operator will no longer need to walk the entire water network with the geophone, but can go directly to the points identified on the map. Experimentation and results Together with the Department of Nuclear Physics at the University of Padua, we have developed a device that, mounted on a car, allows operators to travel along the network and monitor the concentration of neutrons on the road surface. The vehicle moves at a speed of 40-50 km/h along the road under which the water network runs and, using cosmic ray analysis, the levels of detected neutrons are shown on a display. When the concentration drops, it is a sign that the neutrons have been retained under the soil by a cluster of water. When this happens, it means that there may be a water leak in that very spot, underground, and technicians can promptly intervene for repairs. The testing of this technology, which we have been conducting since 2021, has confirmed the scientific soundness of the method: out of several thousand kilometres investigated, the same number of ruptures were found as with the traditional acoustic method, but with the advantage that the cosmic ray method is more productive, since the operator moves around in a car rather than on foot. With a network of some 30,000 kilometres to check, having this tool allows us to make great strides. In addition, cosmic rays are sensitive to even modest leaks, such as those from pipe joints, which are more difficult to detect accurately. This technology, which we have implemented thanks to a partnership with the start-up Cosmic and the team at Neptune Srl, is based on an isotope of lithium, lithium-6, which is the element that allows us to detect neutrons. We will continue to use it alongside the classic acoustic method, to locate all possible leaks and increase the level of effectiveness of interventions. no

Asset Publisher

Focus

A source of clean energy from sewers and wet waste: Biomethane

An investment of Euro 37 million. A plant that disposes of 100 thousand tonnes of organic waste produced by separate waste collection and another 35 thousand tonnes coming from green waste and pruning material. 

Focus

Biodiesel has been developed also from used food oil

Fuel may also be extracted from vegetable oils. Used domestic vegetable oil (such as frying oil) which is recovered by multiutility services via roadside containers and drop-off points, is transformed into biodiesel, which in turn is used to fuel the vehicles used for urban waste collection.

Focus

Bus fuel from trash: Hera's pilot project with "START"

To obtain clean energy to power Ravenna's buses by decomposing waste in landfills. 

Focus

Data, the key to a smart future

From city to "smart city" thanks to data: with our detection systems we can monitor traffic trends, air quality and consumption of public parks. 

Focus

Dialogue with the urban context for new energy: the Borgo Panigale cogeneration plant

District heating is already in itself a "sustainable" and environment-friendly solution, because it can guarantee better performance than traditional domestic boilers. In addition, the plant located in Borgo Panigale ensures lower emissions into the environment, more reliability and greater availability of energy. The system can heat the equivalent of 8,000 residential units. Currently, the turbines can produce 35,000 MWh of energy per year, almost twice as much as in the past.

Focus

Ferrara, the city of "green" heat

What's Ferrara's green secret? It's underground, where a geothermal basin feeds its district heating system. The result? 87% of the thermal energy distributed in the city is "clean" and we avoid about 22 thousand tonnes of CO 2 emissions.

Focus

Hera and General Electric together for energy recovery

We have installed a turbo expander at the R&M stations of Ducati's factory in Bologna. The goal is to recover electricity from the decompression process of methane gas. 

Focus

Hergo Reti: the smart approach to emergency service and maintenance

More than 130 thousand emergency response reports involving 1,500 employees in 2019. More than 50 thousand emergency response operations in the first six months of 2020, in a local area that includes Emilia-Romagna, Triveneto and Marche.

Focus

Hergoambiente, waste bin speaking

Our 300,000 waste bins are talking. How? Thanks to a "tag" that always tells us where they are, how they are working and if they have been emptied. Find out more about the projects of HergoAmbiente, Hera Group's "smart" system to support waste management services.

Focus

Innovation takes flight and offers a variety of perspectives

Hera Group's drones are alternative and supplemental investigation tools to provide quality services to the areas we serve.

— x-items-per-page
showing-x-x-of-x-results

Bilancio bs e be banner

Interactive financial statements and sustainability reports
The consolidated economic results at 31 December 2023 and the 2023 sustainability report were approved by the Board of Directors of the Hera Group on 26 March 2024

Pre-Footer Standard

Hera SpA, Viale Carlo Berti Pichat 2/4, 40127 Bologna, Tel.051287111 www.gruppohera.it