Menu Display


Alert Web

HeraAssetPublisherFilterComuneSelector

Choose the municipality

Ci dispiace, il servizio non è attivo nel tuo comune.
Esplora i servizi attivi nel tuo comune:
Inserisci un comune con il servizio di "Ambiente" oppure vai all'Homepage

Making water drinkable with nanotechnology: it’s now a reality!

Testata Focus

Testata Focus

Category Facet

Category
Category Facet

Custom Facet

ddmStructureKey
Custom Facet

Search Results

1 Result for

Asset Publisher

Making water drinkable with nanotechnology: it’s now a reality!

Discover the project for “removing and capturing” microcontaminants with recycled materials

Micropollutants, or microcontaminants, are chemicals such as pesticides, drugs, medicines and other organic substances that are present in water in very low concentrations. These are substances that are hazardous to human health and the environment, which we constantly monitor and research in order to identify effective removal mechanisms and abatement technologies.

“Removing and capturing” microcontaminants

The project involves the use of materials recovered from the production of hollow fibres for membranes, such as scaffolds used in the medical field which, combined with graphene, can be used as filter material in the water purification process.

In this way, a valuable material, which would otherwise be lost as process waste, is put back into circulation and given new life.

Laboratory tests were performed comparing conventional materials, such as activated carbon and innovative materials (PSU-GO, RGO, GNP, etc.) for the treatment of water resources at the Pontelagoscuro (Ferrara) power plant.
The objective of the test was to verify the effectiveness of these materials in removing various micropollutants, such as: EMPs (Emerging MicroPollutants), EPs (Emerging Pollutants) and possible by-products of ozonation, such as bromates.

The results highlighted the effectiveness of certain filtering materials and the next step will be the construction of a pilot plant within the Pontelagoscuro power plant, to further study and perform further tests on a larger scale.


[business-activities/focus] hidden search categories

Tag Facet

Tag
Tag Facet

Search Results

Focus
04/08/2020
Heratech Project
Circular Economy
Water Project

PSBO: the gentle giant that protects the sea of Rimini

PSBO: the gentle giant that protects the sea of Rimini Keeping the sea clean and ensuring that it is safe to swim in is a complex undertaking, but it's not impossible. Proof of this is the Rimini Optimised Seawater Protection Plan (Piano di Salvaguardia della Balneazione Ottimizzato - PSBO) Plan, the largest water reclamation project underway in Italy, which we worked on together with the Rimini Municipality and Romagna Acque. A construction site, indeed 14 of them, which are changing the face of a city that, for over 60 years, has been the backdrop for the holidays of millions of tourists, both Italian and foreign. With an investment of Euro 154 million, the project will ensure that swimming will be safe along the entire Rimini coastline, eliminating sewage from all 11 discharges into the sea. Restoring a clean, healthy, and transparent sea for Rimini and the whole local area is an essential step to promote and give a new outlook to the entire community. Indeed, the sea is not only a precious resource that drives the economy: it is the site of our identity. psbo.jpg Kennedy Square, where it all begins The massive work of the PSBO, the gentle giant that protects the sea, all begins under Piazzale Kennedy. In the event of a storm, in fact, the treatment plant cannot withstand the large volume of both sewage and rainwater it receives. In order not to damage the plant and to prevent flooding, the water is discharged into the sea without treatment. The operation causes ban on swimming, thus impacting the environment, public health, and the economy of the area. The PSBO avoids this situation thanks to two tanks as large as 20 Olympic-size pools, located 40 meters below ground. The first tank, with a capacity of 14 thousand cubic metres, collects the water from the first flush of rain, while the second one, with a capacity of 25 thousand cubic metres, is designed for "buffering", i.e. reducing the rainwater drainage sent into the sea. A forced ventilation mechanism, which sends the air sucked in from the tanks to a treatment system based on activated carbon technology, permanently solves the problem of bad odours. With their modern architecture integrated into the city context, the new waterfront terraces in Piazzale Kennedy will "hide" this complex structure. One already opened to the public in July 2019, and the other will be completed by summer 2020. The Santa Giustina wastewater treatment plant, the "heart" of the PSBO Once the water is collected in the tanks, its real journey begins under Piazzale Kennedy: perhaps the most important of the PSBO's activities. The buffering tank, in fact, is connected to a runoff pumping system that can pump 18,000 litres per second or convey it to the Santa Giustina treatment plant. This is the heart of the gentle giant of Rimini, who transforms the water to make it, as famous song says, "blue and clear". Enhanced with a series of measures that have doubled its capacity, the treatment plant is now able to treat all the wastewater, i.e. from domestic and industrial sewage, from the local area of Rimini and the state of San Marino, and serving 560 thousand inhabitants during the summer season. After separating the water from sand and oil, and eliminating the sewage using denitrifying bacteria (organisms that feed on the substances in the sewage), the treatment plant makes the wastewater transparent and clean thanks to microfiltration membranes, a cutting-edge technology that captures microscopic particles such as viruses and bacteria. The main construction sites of the PSBO Let's go through the history of this ambitious project together. The doubling of the Santa Giustina treatment plant started in 2013 and finished in 2015, was the real kick-off of the PSBO project. Its activity, which is the heart of the entire plant, is also closely linked to the conversion of the Marecchiese treatment plant, to buffer the flow rates to Santa Giustina. Another important milestone was achieved in 2014: the beginning of the remodelling of Rimini's sewerage system, which involved the rehabilitation of Rimini Isola, followed by the separation of the sewerage networks of Rimini Nord. The latter, completed in 2020, was a fundamental step for the entire project. It directly involved the residents of the area, who were called upon to connect their discharge to the new sewage water pipes correctly. At the same time, in 2015 we completed the work on the North Backbone, the link between the Santa Giustina and Bellaria treatment plants, and in 2018 the excavation (using microtunneling) of the South Backbone: thanks to the "mole" boring machine, we laid pipelines under natural slopes, or major roads in towns, without requiring extensive excavations. Further measures, such as the Ausa sewage collector, the Mavone floodway channel, and the sewer pumping station in Via Santa Chiara, have significantly reduced the risk of flooding in most areas of the town where this problem frequently occurs. In addition, with the Ausa Canal project, which artificially covers the canal, we have enhanced the water flow rate in the final stretch from the waterfront to the sea when the spillway channels are opened, creating a pleasant path between the waterfront and Piazzale Kennedy that makes even the nearby swimming facilities more attractive. The results we have achieved To date, more than 5 thousand square meters of coastline have been "freed" from swimming bans, and the construction work is now 90% completed. Thanks to sieving and storage treatments, we have also managed to recover over 20 thousand cubic metres of sand to replenish the beaches along the coast: this operation, which we could describe as a real "feeding" of the beaches by adding new sand, makes it possible to counteract the erosion of the coast, abiding by the principles of the circular economy. These achievements, along with all other planned interventions, have led the PSBO to be mentioned in the UN report "SDG Industry Matrix: Energy, Natural Resources & Chemicals" (2017) as a best practice linked to the sustainable development objectives of the UN’s 2030 Global Agenda. Heratech no

Asset Publisher

Focus

A source of clean energy from sewers and wet waste: Biomethane

An investment of Euro 37 million. A plant that disposes of 100 thousand tonnes of organic waste produced by separate waste collection and another 35 thousand tonnes coming from green waste and pruning material. 

Focus

Biodiesel has been developed also from used food oil

Fuel may also be extracted from vegetable oils. Used domestic vegetable oil (such as frying oil) which is recovered by multiutility services via roadside containers and drop-off points, is transformed into biodiesel, which in turn is used to fuel the vehicles used for urban waste collection.

Focus

Bus fuel from trash: Hera's pilot project with "START"

To obtain clean energy to power Ravenna's buses by decomposing waste in landfills. 

Focus

Data, the key to a smart future

From city to "smart city" thanks to data: with our detection systems we can monitor traffic trends, air quality and consumption of public parks. 

Focus

Dialogue with the urban context for new energy: the Borgo Panigale cogeneration plant

District heating is already in itself a "sustainable" and environment-friendly solution, because it can guarantee better performance than traditional domestic boilers. In addition, the plant located in Borgo Panigale ensures lower emissions into the environment, more reliability and greater availability of energy. The system can heat the equivalent of 8,000 residential units. Currently, the turbines can produce 35,000 MWh of energy per year, almost twice as much as in the past.

Focus

Ferrara, the city of "green" heat

What's Ferrara's green secret? It's underground, where a geothermal basin feeds its district heating system. The result? 87% of the thermal energy distributed in the city is "clean" and we avoid about 22 thousand tonnes of CO 2 emissions.

Focus

Hera and General Electric together for energy recovery

We have installed a turbo expander at the R&M stations of Ducati's factory in Bologna. The goal is to recover electricity from the decompression process of methane gas. 

Focus

Hergo Reti: the smart approach to emergency service and maintenance

More than 130 thousand emergency response reports involving 1,500 employees in 2019. More than 50 thousand emergency response operations in the first six months of 2020, in a local area that includes Emilia-Romagna, Triveneto and Marche.

Focus

Hergoambiente, waste bin speaking

Our 300,000 waste bins are talking. How? Thanks to a "tag" that always tells us where they are, how they are working and if they have been emptied. Find out more about the projects of HergoAmbiente, Hera Group's "smart" system to support waste management services.

Focus

Innovation takes flight and offers a variety of perspectives

Hera Group's drones are alternative and supplemental investigation tools to provide quality services to the areas we serve.

— 10 Items per Page
Showing 1 - 10 of 28 results.

Bilancio bs e be banner

Interactive financial statements and sustainability reports
The consolidated economic results at 31 December 2023 and the 2023 sustainability report were approved by the Board of Directors of the Hera Group on 26 March 2024

Pre-Footer Standard

Hera SpA, Viale Carlo Berti Pichat 2/4, 40127 Bologna, Tel.051287111 www.gruppohera.it