Menu Display


Alert Web

HeraAssetPublisherFilterComuneSelector

Hera and General Electric together for energy recovery

Testata Focus

Testata Focus

Category Facet

Category
Category Facet

Custom Facet

ddmStructureKey
Custom Facet

Search Results

10 Results for

Asset Publisher

Hera and General Electric together for energy recovery

We have installed a turbo expander at the R&M stations of Ducati's factory in Bologna. The goal is to recover electricity from the decompression process of methane gas. 

An experimental and innovative project with an ambitious goal: energy recovery and lower consumption of fossil fuels by decompressing the methane gas distributed in urban networks.

The exclusive agreement between Hera Group and General Electric specifically involves installing a turbo expander at the R&M stations (gas delivery points) of the Ducati factory in Bologna. It is a medium-small turbo expander (330 kW electric), which can be installed in medium-sized R&M stations, that in combination with a heat pump that uses CO2 as a thermal carrier fluid, recovers part of the electric energy to preheat the gas used in the process.

In 2019, we completed all the production start-up activities and started the provisional running phase, in order to carry out all the performance and endurance tests. It is scheduled to start operating at full capacity in the second half of 2020.

Once the testing is completed, if the expected performance is confirmed, this technology can be installed in other methane gas decompression stations of the Hera Group.

The project, moreover, contributes to achieving target 7.3 of the UN’s 2030 Agenda.


[business-activities/focus] hidden search categories

Tag Facet

Tag
Tag Facet

Search Results

Focus
18/12/2024
Innovation
Water Project

Algae to Value: wastewater turns into a benefit for agriculture

Algae to Value: wastewater turns into a benefit for agriculture img_algae.jpg The connection between the water cycle and agriculture has grown increasingly strong over the years, based on a straightforward principle: critical raw materials recovered from wastewater treatment – such as phosphorus, which is predominantly imported from China – are redirected to the agricultural sector. Here, the formula (nitrogen, phosphorus, and potassium) represents the three essential macro-elements that are vital for plant health and growth. The project was implemented at the San Cesario sul Panaro wastewater treatment plant in the province of Modena, chosen for its ample space, which enabled the construction of two open-air vertical reactors. The initial results from batch tests show high removal rates of nitrogen and phosphorus (ranging from 60% to 100%) and biomass growth that varies depending on the technology used. These findings open up possibilities for further exploration of potential scale-ups with the aim of industrialising the project. In the coming months, the monitoring of key parameters and variables will be intensified, also to support a circular vision with an eye on industrial-scale prospects. Ongoing talks with several companies in the Emilia-Romagna agro-industrial sector are focused on assessing the potential for scaling up the project. no
Focus
13/12/2023
Innovation
Water Project

State-of-the-art prevention and control tools for high-quality water

State-of-the-art prevention and control tools for high-quality water Around 10,000 new substances are constantly being released into the environment. To ensure the quality of the water distributed, we need to intercept potentially polluting substances contained in the raw water we take from the source, and prevent them from entering our drinking water systems. How? Through an early warning system which, thanks to the use of innovative tools, makes it possible to develop preventive control of the quality of water in the network, and to anticipate critical issues and management problems. img_prevenzione_controllo_focus_110.jpg Early warning: how does it work? Water can be identified by creating a typical digital imprint, the FingerPrint, built on a specific template. Basically, UV-visible spectrophotometric analysis technology is used to make a “scan” of water, i.e. a kind of characteristic digital image, creating a spectrum associated with various organic substances. The model acquires the “fingerprint” of the monitored water and uniquely identifies it. When the water taken from the source has a “fingerprint” that is not recognised, the system triggers an alarm and further checks are carried out. This technology is particularly fast, allowing a water scan in less than two minutes. In addition, the system is very useful because it allows us to interrupt the withdrawal of water resources until the pollution has “passed”, or the reliability of the reported alert has been verified, thus guaranteeing high levels of safety of the water within the network. This innovative monitoring system was first applied in Bubano, near Imola, and later at the Val di Setta drinking water treatment plant in Bologna, which draws water from surface springs of the Reno and Setta rivers. no
Focus
13/12/2023
Innovation
Water Project

Making water drinkable with nanotechnology: it’s now a reality!

Making water drinkable with nanotechnology: now we can! Micropollutants, or microcontaminants, are chemicals such as pesticides, drugs, medicines and other organic substances that are present in water in very low concentrations. These are substances that are hazardous to human health and the environment, which we constantly monitor and research in order to identify effective removal mechanisms and abatement technologies. img_focus_nanotecnologie_110.jpg “Removing and capturing” microcontaminants The project involves the use of materials recovered from the production of hollow fibres for membranes, such as scaffolds used in the medical field which, combined with graphene, can be used as filter material in the water purification process. In this way, a valuable material, which would otherwise be lost as process waste, is put back into circulation and given new life. Laboratory tests were performed comparing conventional materials, such as activated carbon and innovative materials (PSU-GO, RGO, GNP, etc.) for the treatment of water resources at the Pontelagoscuro (Ferrara) power plant. The objective of the test was to verify the effectiveness of these materials in removing various micropollutants, such as: EMPs (Emerging MicroPollutants), EPs (Emerging Pollutants) and possible by-products of ozonation, such as bromates. The results highlighted the effectiveness of certain filtering materials and the next step will be the construction of a pilot plant within the Pontelagoscuro power plant, to further study and perform further tests on a larger scale. Laboratory results have highlighted the effectiveness of some filter materials, and the inauguration of the pilot plant at the Pontelagoscuro drinking water treatment plant in February 2024 allows the working group to implement full-scale application tests with varying concentrations of graphene oxide. In addition to Hera, CNR and Medica are also taking part in the project. They have built the plant thanks to an EU LIFE project. no
Focus
13/12/2023
Water Project
Innovation

The search for water leaks is now more efficient, thanks to cosmic rays

The search for water leaks is now more efficient, thanks to cosmic rays So far, the method used to find leaks in the water mains that run under our streets has been acoustic detection: technicians walk the kilometres of asphalt above the mains and use special devices to locate leakage points. Now, however, thanks to a system that uses cosmic rays, detection can also be carried out while following the network path in a car, thus proving faster and more profitable. Raggi_cosmici_focus_110.jpg Cosmic rays: what are they and how can they be used? Cosmic rays are an innovative method for water leak detection, based on the analysis of neutrons derived from secondary cosmic rays. It follows the same principle used to test whether there is water on Mars, but it can have different applications; for example, it is used in agriculture in the US for targeted irrigation. In short, this technology exploits non-damaging particles, the neutrons, from space. These continuously impact Earth, generating collisions between secondary beams, the energy of which decreases according to the material that is passed through. In particular, hydrogen in water interacts with neutrons by slowing them down or absorbing them. The amount of water in the ground can therefore be assessed by monitoring neutrons in the air: ground where water is present in a higher percentage will have a greater moderating/absorbing effect on cosmic rays than a drier area. By analysing the concentration of free cosmic rays, the presence of a water leak can be determined quickly and accurately, saving considerable time compared to traditional methods of investigation. In fact, this system can control a considerably larger network area, because it can travel on any vehicle on which it is mounted. The search can be carried out by real-time identification, i.e. simply by the passage of the device over the tube and immediate verification of the leakage as soon as the sensor signals a decrease in the number of neutrons, or by deferred search, when the sensor placed on a moving vehicle passes over the area several times and then indicates the wettest spots. The operator will no longer need to walk the entire water network with the geophone, but can go directly to the points identified on the map. Experimentation and results Together with the Department of Nuclear Physics at the University of Padua, we have developed a device that, mounted on a car, allows operators to travel along the network and monitor the concentration of neutrons on the road surface. The vehicle moves at a speed of 40-50 km/h along the road under which the water network runs and, using cosmic ray analysis, the levels of detected neutrons are shown on a display. When the concentration drops, it is a sign that the neutrons have been retained under the soil by a cluster of water. When this happens, it means that there may be a water leak in that very spot, underground, and technicians can promptly intervene for repairs. The testing of this technology, which we have been conducting since 2021, has confirmed the scientific soundness of the method: out of several thousand kilometres investigated, the same number of ruptures were found as with the traditional acoustic method, but with the advantage that the cosmic ray method is more productive, since the operator moves around in a car rather than on foot. With a network of some 30,000 kilometres to check, having this tool allows us to make great strides. In addition, cosmic rays are sensitive to even modest leaks, such as those from pipe joints, which are more difficult to detect accurately. This technology, which we have implemented thanks to a partnership with the start-up Cosmic and the team at Neptune Srl, is based on an isotope of lithium, lithium-6, which is the element that allows us to detect neutrons. We will continue to use it alongside the classic acoustic method, to locate all possible leaks and increase the level of effectiveness of interventions. no
Focus
13/12/2023
Innovation
Water Project

Sentry meters, to detect water leaks in the network

Sentry meters, to detect water leaks in the network contatori_kampsturp_110.jpg The Flow IQ® 2200 manufactured by Kamstrup, a well-established European supplier, is a sentry meter that can “listen” to the network thanks to a built-in hydrophone, i.e. a sensor designed to capture sounds and other acoustic signals underwater, which in this case is able to detect the noise associated with any water leaks. By placing the meters at strategic points in the network, about 50 metres apart, it is possible to create a grid within which continuous monitoring can be carried out. The meters transmit to a digital platform (called the LeakDetector) the minimum value of noise detected in 24 hours: if this is high, the meters will be highlighted with different alarm levels and analysis of the data will make it possible to identify whether it is indeed a water leak. If a leak or break code is activated for a meter, the customer will be notified promptly by our technicians. The meter testing phase started in May 2022 with the installation of more than 900 meters in the municipality of Conselice, where continuous monitoring of the water network began in September 2022 with real-time analysis of the leaks present, thereby allowing targeted intervention for repairs. The results achieved at Conselice and the award of PNRR financing for the reduction of water leaks led to the extension between 2023 and 2024 of the installations of this advanced smart meter also in the provinces of Modena (1150) and Ferrara (1200). A further 8300 installations will follow in 2025 with PNRR funding in the areas of Bologna, Ravenna, Forlì-Cesena and Rimini.   The Conselice pilot project: benefits noted Reliability The meters are extremely reliable, the leak and break indications that were verified were correct and no false positives were found. Promptness We intervened before customers called us: many leaks were repaired the day after they appeared, whereas previously some leaks would only have been detected following issue of a bill with an unusually high consumption figure. Permanent monitoring Compared to the installation of standard meters, the main difference is that with Flow IQ® 2200s, a permanent water leak monitoring system is put in place. Kamstrup meters are also smart meters and automatically send data to the portal. Rapid localisation If the meters are correctly positioned, field localisation is quick because the area to be investigated is confined. Integration The system interfaces seamlessly with other company monitoring tools. Affordability By correctly establishing the number of meters required, good network coverage is achieved without an unsustainable increase in costs. no
Focus
04/08/2020
Heratech Project
Circular Economy
Water Project

PSBO: The gentle giant that protects the sea of Rimini

PSBO: The gentle giant that protects the sea of Rimini Keeping the sea clean and ensuring it is safe for swimming is a complex task, but not an impossible one. This is demonstrated by the Rimini Optimised Seawater Protection Plan (PSBO), the largest water sanitation project currently underway in Italy, which we have developed in collaboration with the town’s municipality, with Romagna Acque and Amir. A construction site — or rather, 14 — that is quite literally transforming the face of a town that has been the backdrop to the holidays of millions of Italian and international tourists for over 60 years. With an investment of €200 million, the project will ensure the complete bathing safety of the Rimini coastline, eliminating wastewater from all 11 sea discharges. Restoring clean, healthy and crystal-clear sea to Rimini and the surrounding area is a vital step in enhancing and creating new opportunities for the whole community. Because the sea is not just a key driver of the economy — it is the heart of our identity. psbo.jpg Piazzale Kennedy, where it all began It was beneath Piazzale Kennedy that the great works to build the gentle giant that protects the sea started. In case of a storm, the wastewater treatment plant is unable to handle such a large volume of both clear and dark waters. To prevent damage to the plant and avoid flooding, these waters are discharged into the sea without treatment. This results in a bathing ban, with an impact on the environment, health and the local economy. The PSBO prevents this thanks to a system of tanks as large as 20 Olympic swimming pools, located 40 metres below the surface. The first tank, with a capacity of 14,000 cubic metres, collects the initial rainfall, while the second, with a capacity of 25,000 cubic metres, is dedicated to regulating the flow of clean water into the sea. Thanks to a forced ventilation system, which directs the air drawn from the tanks to a treatment system using activated carbon technology, the problem of foul odours can also be permanently solved. Concealing this complex facility with its modern architecture, seamlessly integrated into the urban landscape, is the Piazzale Kennedy viewpoint, which has been open to the public since 2019. The Santa Giustina treatment plant, the heart of the PSBO Once the water has been collected in the tanks, a true journey begins beneath Piazzale Kennedy, perhaps the most important of all the activities connected to the PSBO. The tank system is linked to a pumping station with a discharge capacity of 18,000 litres per second: the Santa Giustina treatment plant. This is the heart of Rimini’s gentle giant, which transforms the water, making it, as a famous song says, “clear and blue”. Enhanced with a series of upgrades that have doubled its capacity, the plant can now treat all wastewater, both domestic and industrial, from the Rimini area and the Republic of San Marino, serving 560,000 residents during the summer season. After separating the water from sand and oils and eliminating the sewage sludge using denitrifying bacteria (organisms that feed on the substances contained in the sludge), the treatment plant makes the wastewater clear and clean through microfiltrating membranes, a cutting-edge technology that captures microscopic particles such as viruses and bacteria. The PSBO's most important works Let’s revisit the history of this ambitious project. The doubling of the Santa Giustina treatment plant, which began in 2013 and was completed in 2015, marked the true kick-off of the PSBO. Its operation, which is the heart of the entire system, was closely linked to the conversion work at the Marecchiese treatment plant, which serves to regulate the flows directed to Santa Giustina. 2014 marked the beginning of another important milestone: the start of the remodelling of the sewerage system in Rimini, which initially involved the redevelopment of Rimini Isola, and later the separation of the sewerage systems of Rimini Nord. The latter, which is scheduled to be completed in 2026, is a crucial step in the entire project, directly involving residents in the area, who are asked to connect their discharge properly to the new sewerage pipes for wastewater. At the same time, the North Dorsal project was completed in 2015, connecting the Santa Giustina treatment plant with the Bellaria plant. In 2018, the excavation work (microtunneling) for the South Dorsal was also completed: thanks to a boring machine, it was possible to lay pipes beneath natural elevations or major roads in urban areas without the need for large-scale excavation. Other works, such as the Ausa sewer collector, the Mavone overflow channel and the sewer lift in via Santa Chiara, have significantly reduced the risk of flooding in many areas of the town where this problem is recurring. Additionally, with the project to cover the Ausa Canal, which involves its artificial capping, we have optimised the water flow in the final stretch from the seafront to the sea in case of overflow discharge, creating an attractive pathway between the seafront and Piazzale Kennedy that enhances the nearby beaches. Two new viewpoints as the PSBO moves south Starting from 2025, the PSBO in Rimini will enter a new phase with the start of key works and projects. Work will begin to build two retention tanks for rainwater and initial rainfall, which are vital for managing stormwater and preventing flooding. These tanks will be located at Colonnella 2 (Piazzale Arturo Toscanini) and at the Rodella pit in Rivazzurra (Piazzale Artemisia Gentileschi). But the developments don’t end there. Above the tanks, in a fully redeveloped area, two beautiful viewpoints will be built as part of the Parco del Mare. These will offer stunning views of the sea and will integrate seamlessly into the urban environment, following the design lines of the Parco del Mare project. The results we have achieved To date, construction works are 90% complete and they have already freed 8,000 metres of coastline from bathing restrictions, a figure that will rise to 12,000 metres upon completion. Through sifting and storage treatments, over 20,000 cubic metres of sand have also been recovered for beach replenishment. This operation, which could be described as a true “nourishment” of the beaches through the addition of new sand, helps counteract coastal erosion, following the principles of the circular economy. These achievements, along with all the other planned interventions, have led the PSBO to be cited in the United Nations report “SDG Industry Matrix: Energy, Natural Resources and Chemicals” (2017) as a best practice related to the sustainable development goals of the 2030 UN Agenda. Heratech no
Focus
04/08/2020
Water Project
Innovation

The preventive maintenance of sewerage networks travels in space

The preventive maintenance of sewerage networks travels in space From up on a satellite, we can see if an aqueduct has leaks, and we can predict if our sewer networks need maintenance. Indeed, the most advanced technologies enable us to be even more efficient in managing the water cycle, transitioning from "fighting fires"' to taking "predictive" action, to prevent collector failure as much as possible. manutenzione reti fognarie.jpg The new pilot project uses data provided by satellites of the European Space Agency. By overlaying the satellite scan on the map of our sewerage networks, we can precisely assess the state of the land and infrastructure. If we find subsidence, we carry out an accurate video inspection to act pre-emptively. Modena, where we operate a total of 2,230 km of sewerage network, and Bologna, where we manage about 4,000, are leading the pilot project. The areas, where the plain is interspersed with hills and mountains, have similar characteristics. In total, the project covers more than 6,200 km of network, on a total area of almost 3,500 km2. We are implementing and refining this monitoring system. We plan to extend it to other infrastructures in the future. With the experimental use of satellite technologies, the Hera Group participates in EuroGEOSS, the European project that puts the most innovative IT systems for the observation of terrestrial phenomena at the service of the environment. The CNR, the Italian National Research Council also participates in the initiative. " We have been enthusiasts of innovation, the development of new technologies and their experimentation", says Franco Fogacci, Water Director of the Hera Group. "These systems, based on satellite tracking, the result of high-level international collaboration, are creating added value for the integrated water service that Hera operates in 239 Italian municipalities, for a catchment area of over 3.6 million inhabitants. no
Focus
04/08/2020
Circular Economy
Water Project
Innovation

Wastewater "gets beautiful" with ultrasound treatment

Wastewater "gets beautiful" with ultrasound treatment Wastewater is all the water that, after having been used in domestic, agricultural, and industrial activities, must be treated before being returned to the environment. This water contains a solid part – sludge – which is removed during treatment. But, in addition to giving a new life to wastewater, can we also make the sludge life cycle circular, by reducing the amount to be disposed of? Back in 2017, we started research to answer these questions, and, once again, we decided to invest in new technologies to lighten the impact on the environment and be more virtuous. In November 2019, our efforts became a reality, thanks to the ultrasound sludge hydrolysis system, installed at the Forlì treatment plant. In this system, part of the sludge from the wastewater treatment process is subjected to sound waves. The waves, in contact with the liquid matrix to be treated, biodegrade more volatile solids, increasing biogas production, and reducing the final dry matter in the sludge. All this makes it possible to significantly reduce the volume of sludge to be disposed of and opens up new scenarios for the use of the biogas obtained thanks to the ultrasound system. During 2020 the initial results will be reported and we look forward to sharing the successes of this new adventure with you. 110_150_depurazione.1597408821.jpg no
Focus
04/08/2020
Water Project
Innovation

Innovation takes flight and offers a variety of perspectives

Innovation takes flight and offers a variety of perspectives Cameras on. Three, two, one... take one! Or maybe it would be better to say... Go! Our drones are off. Yes, you got that right. To ensure high quality services, we have invested in the most modern technologies, such as drones, which have become alternative and complementary investigative tools for the Hera Group. innovazione spicca il volo (1).jpeg Drones offer us countless opportunities in the management of essential services, such as checking the status of power lines, which can present problems that are difficult for ground-based operators to identify. We use helicopters to inspect the nearly 1,500 km of overhead power lines under our responsibility. Drones also enable us to protect our service areas by checking for possible illegal discharges and observing the filling status of landfills, and offer increasingly timely services by monitoring the upgrades of public lighting, observing tanks and roofs. Not only that: specially designed drones support us in sewer inspection, providing accurate data to help optimise our work. Our drones soar through the sky but also dive under water. Indeed, to offer higher and higher quality standards, special aquatic drones enable us to analyse the state of drinking water tanks, and of reservoirs without emptying them, giving us information about the collectors even if they are filled with murky water. For us, leveraging innovation to contribute to the development of the local area and promoting efficient use of resources are the pillars of a broader project: creating Shared Value. For some time, we have been using cutting-edge technology that goes beyond drones, like satellite scanning. With this system, we can remotely assess the stability of the sewer collectors, pre-locate leaks in the water networks, and monitor landslides in our Apennine service area, to prevent problems in the gas networks.
Focus
04/08/2020
Water Project
Innovation

Water treatment 4.0, between artificial intelligence and predictive technologies

Water treatment 4.0, between artificial intelligence and predictive technologies The watchword is innovation. To protect the environment and those who live in it, and to provide quality services. That's always been our belief. But there's more. We need to add another watchword: resilience, the ability to cope with change. And when we speak of climate change, we have learned that innovation and resilience are inseparable. The most modern technologies allow us, in fact, to face sudden changes, turning to prevention, the ability to predict causes and consequences, acting in advance. Image_psbo.png Following this principle, and as the second-ranking Italian operator in terms of volumes of water sold, we have earmarked Euro 830 million for smart technologies in our Business Plan for 2023. In fact, the networks and plants of the water cycle are subjected to increasing stress due to the ongoing climate change, and only our ability to adapt and innovate, has made us an Italian excellence in the industry. The investments we have made are 20% higher than the Italian average - almost Euro 176 million in 2019 alone – and reaffirm our commitment to a circular and regenerative economy, starting with water. In particular, by complying with the requests of the United Nations Global Compact on the sustainable management of water resources, we remain committed to continuously innovate the service to achieve its gradual decarbonisation. This happens not only by using only renewable energy but also through energy efficiency projects and optimisation of the processes involved in the treatment. There are two virtuous examples we are particularly proud of, the Modena treatment plant and that of Granarolo dell'Emilia (Bologna). THE SMART TREATMENT PLANT IN MODENA Blue water, clear water. This is the refrain that welcomes to Modena's smart treatment plant. Its new predictive system, unique in Italy, enables us to improve the quality of the water we return to the environment and to further reduce the energy consumption of our wastewater treatment plant. Here, technological innovation, integrated systems, and efficient use of resources are at the forefront. The project, developed together with Energy Way (the company that develops mathematical models for the efficient and sustainable development of businesses), created a system capable of controlling the oxidation process, a fundamental phase of the wastewater treatment cycle, anticipating the needs of the plant's activities. In fact, the requirements vary according to the water flow rate and the concentration of organic pollutants. The smart controller anticipates, 30 minutes in advance, the condition of the plant and acts beforehand to avoid the concentration of pollutants or energy peaks. The pilot project has yielded positive results, which we are proud of. The Modena treatment plant, which can cope with the needs of 500,000 inhabitants, recorded a 16% decrease in energy used in the oxidation process, compared to a traditional control system, and a further 8.1% decrease in the presence of nitrogen in the outgoing water (a parameter already below the regulatory limits). WELCOME TO CONSTANCE, PROTOTYPE OF THE GRANAROLO DELL’EMILIA TREATMENT PLANT It's just been born, but it's looking very promising. We are talking about CONSTANCE (COntrollo iNtelligente e geSTione Automatizzata per il trattameNto di aCque rEflue). The system is the fruit of a partnership between Hera Group and ENEA (Ente per le Nuove tecnologie, l'Energia e l'Ambiente), is based on machine learning technologies, and can reduce energy and water treatment plant management costs by more than 30%. The prototype has reached a level 7 technological maturity and is ready for industrialisation; the first tests were successfully carried out in our treatment plant in Granarolo dell'Emilia (Bologna). CONSTANCE's main innovative feature enables us to remotely manage multiple treatment plants and to estimate in real-time the percentage of pollutants entering the plant, such as nitrogen, reducing them and thus returning cleaner water. "At Hera, we place technological innovation among the fundamental pillars of our management and development strategy. With this in mind, in 2017 we formed a partnership with ENEA to build projects of common interest," says Franco Fogacci, Water Director of Hera. "The experimental test project of ENEA's CONSTANCE controller at our treatment plant will allow us both to further develop skills, know-how, and transfer new technologies into real applications on an industrial scale, for the benefit of citizens and the environment", he concludes.

Asset Publisher

Focus

A source of clean energy from sewers and wet waste: Biomethane

An investment of Euro 37 million. A plant that disposes of 100 thousand tonnes of organic waste produced by separate waste collection and another 35 thousand tonnes coming from green waste and pruning material. 

Focus

Algae to Value: wastewater turns into a benefit for agriculture

The connection between the water cycle and agriculture has grown increasingly strong over the years, based on a straightforward principle

Focus

Biodiesel has been developed also from used food oil

Fuel may also be extracted from vegetable oils. Used domestic vegetable oil (such as frying oil) which is recovered by multiutility services via roadside containers and drop-off points, is transformed into biodiesel, which in turn is used to fuel the vehicles used for urban waste collection.

Focus

Bus fuel from trash: Hera's pilot project with "START"

To obtain clean energy to power Ravenna's buses by decomposing waste in landfills. 

Focus

Data, the key to a smart future

From city to "smart city" thanks to data: with our detection systems we can monitor traffic trends, air quality and consumption of public parks. 

Focus

Dialogue with the urban context for new energy: the Borgo Panigale cogeneration plant

District heating is already in itself a "sustainable" and environment-friendly solution, because it can guarantee better performance than traditional domestic boilers. In addition, the plant located in Borgo Panigale ensures lower emissions into the environment, more reliability and greater availability of energy. The system can heat the equivalent of 8,000 residential units. Currently, the turbines can produce 35,000 MWh of energy per year, almost twice as much as in the past.

Focus

Ferrara, the city of "green" heat

What's Ferrara's green secret? It's underground, where a geothermal basin feeds its district heating system. The result? 87% of the thermal energy distributed in the city is "clean" and we avoid about 22 thousand tonnes of CO 2 emissions.

Focus

Hera and General Electric together for energy recovery

We have installed a turbo expander at the R&M stations of Ducati's factory in Bologna. The goal is to recover electricity from the decompression process of methane gas. 

Focus

Hergo Reti: the smart approach to emergency service and maintenance

More than 130 thousand emergency response reports involving 1,500 employees in 2019. More than 50 thousand emergency response operations in the first six months of 2020, in a local area that includes Emilia-Romagna, Triveneto and Marche.

Focus

Hergoambiente, waste bin speaking

Our 300,000 waste bins are talking. How? Thanks to a "tag" that always tells us where they are, how they are working and if they have been emptied. Find out more about the projects of HergoAmbiente, Hera Group's "smart" system to support waste management services.

— 10 Items per Page
Showing 1 - 10 of 28 results.

Bilancio bs e be banner

Interactive financial statements and sustainability reports
The consolidated economic results at 31 December 2023 and the 2023 sustainability report were approved by the Board of Directors of the Hera Group on 26 March 2024

Pre-Footer Standard

Hera SpA, Viale Carlo Berti Pichat 2/4, 40127 Bologna, Tel.051287111 www.gruppohera.it